Vulnerabilities 3.3
If you think you have found a security bug in OpenSSL, please report it to us.
Show issues fixed only in OpenSSL 3.3, 3.2, 3.1, 3.0, 1.1.1, 1.1.0, 1.0.2, 1.0.1, 1.0.0, 0.9.8, 0.9.7, 0.9.6, or all versions
Fixed in OpenSSL 3.3
2024
CVE-2024-9143 - Low-level invalid GF(2^m) parameters lead to OOB memory access [Low severity] 16 October 2024:
Issue summary: Use of the low-level GF(2^m) elliptic curve APIs with untrusted
explicit values for the field polynomial can lead to out-of-bounds memory reads
or writes.
Impact summary: Out of bound memory writes can lead to an application crash or
even a possibility of a remote code execution, however, in all the protocols
involving Elliptic Curve Cryptography that we’re aware of, either only “named
curves” are supported, or, if explicit curve parameters are supported, they
specify an X9.62 encoding of binary (GF(2^m)) curves that can’t represent
problematic input values. Thus the likelihood of existence of a vulnerable
application is low.
In particular, the X9.62 encoding is used for ECC keys in X.509 certificates,
so problematic inputs cannot occur in the context of processing X.509
certificates. Any problematic use-cases would have to be using an “exotic”
curve encoding.
The affected APIs include: EC_GROUP_new_curve_GF2m(), EC_GROUP_new_from_params(),
and various supporting BN_GF2m_*() functions.
Applications working with “exotic” explicit binary (GF(2^m)) curve parameters,
that make it possible to represent invalid field polynomials with a zero
constant term, via the above or similar APIs, may terminate abruptly as a
result of reading or writing outside of array bounds. Remote code execution
cannot easily be ruled out.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Found by Google OSS-Fuzz-Gen.
Fix developed by Viktor Dukhovni.
- Fixed in OpenSSL 3.3.3 (git commit) (Affected since 3.3.0)
- This issue was also addressed in OpenSSL 3.2.4, OpenSSL 3.1.8, OpenSSL 3.0.16, OpenSSL 1.1.1zb, OpenSSL 1.0.2zl
CVE-2024-6119 - Possible denial of service in X.509 name checks [Moderate severity] 03 September 2024:
Issue summary: Applications performing certificate name checks (e.g., TLS
clients checking server certificates) may attempt to read an invalid memory
address resulting in abnormal termination of the application process.
Impact summary: Abnormal termination of an application can a cause a denial of
service.
Applications performing certificate name checks (e.g., TLS clients checking
server certificates) may attempt to read an invalid memory address when
comparing the expected name with an otherName
subject alternative name of an
X.509 certificate. This may result in an exception that terminates the
application program.
Note that basic certificate chain validation (signatures, dates, …) is not
affected, the denial of service can occur only when the application also
specifies an expected DNS name, Email address or IP address.
TLS servers rarely solicit client certificates, and even when they do, they
generally don’t perform a name check against a reference identifier (expected
identity), but rather extract the presented identity after checking the
certificate chain. So TLS servers are generally not affected and the severity
of the issue is Moderate.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Found by David Benjamin (Google).
Fix developed by Viktor Dukhovni.
- Fixed in OpenSSL 3.3.2 (git commit) (Affected since 3.3.0)
- This issue was also addressed in OpenSSL 3.2.3, OpenSSL 3.1.7, OpenSSL 3.0.15
CVE-2024-5535 - SSL_select_next_proto buffer overread [Low severity] 26 June 2024:
Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an
empty supported client protocols buffer may cause a crash or memory contents to
be sent to the peer.
Impact summary: A buffer overread can have a range of potential consequences
such as unexpected application beahviour or a crash. In particular this issue
could result in up to 255 bytes of arbitrary private data from memory being sent
to the peer leading to a loss of confidentiality. However, only applications
that directly call the SSL_select_next_proto function with a 0 length list of
supported client protocols are affected by this issue. This would normally never
be a valid scenario and is typically not under attacker control but may occur by
accident in the case of a configuration or programming error in the calling
application.
The OpenSSL API function SSL_select_next_proto is typically used by TLS
applications that support ALPN (Application Layer Protocol Negotiation) or NPN
(Next Protocol Negotiation). NPN is older, was never standardised and
is deprecated in favour of ALPN. We believe that ALPN is significantly more
widely deployed than NPN. The SSL_select_next_proto function accepts a list of
protocols from the server and a list of protocols from the client and returns
the first protocol that appears in the server list that also appears in the
client list. In the case of no overlap between the two lists it returns the
first item in the client list. In either case it will signal whether an overlap
between the two lists was found. In the case where SSL_select_next_proto is
called with a zero length client list it fails to notice this condition and
returns the memory immediately following the client list pointer (and reports
that there was no overlap in the lists).
This function is typically called from a server side application callback for
ALPN or a client side application callback for NPN. In the case of ALPN the list
of protocols supplied by the client is guaranteed by libssl to never be zero in
length. The list of server protocols comes from the application and should never
normally be expected to be of zero length. In this case if the
SSL_select_next_proto function has been called as expected (with the list
supplied by the client passed in the client/client_len parameters), then the
application will not be vulnerable to this issue. If the application has
accidentally been configured with a zero length server list, and has
accidentally passed that zero length server list in the client/client_len
parameters, and has additionally failed to correctly handle a “no overlap”
response (which would normally result in a handshake failure in ALPN) then it
will be vulnerable to this problem.
In the case of NPN, the protocol permits the client to opportunistically select
a protocol when there is no overlap. OpenSSL returns the first client protocol
in the no overlap case in support of this. The list of client protocols comes
from the application and should never normally be expected to be of zero length.
However if the SSL_select_next_proto function is accidentally called with a
client_len of 0 then an invalid memory pointer will be returned instead. If the
application uses this output as the opportunistic protocol then the loss of
confidentiality will occur.
This issue has been assessed as Low severity because applications are most
likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not
widely used. It also requires an application configuration or programming error.
Finally, this issue would not typically be under attacker control making active
exploitation unlikely.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Due to the low severity of this issue we are not issuing new releases of
OpenSSL at this time. The fix will be included in the next releases when they
become available.
Found by Joseph Birr-Pixton.
Thanks to David Benjamin (Google).
Fix developed by Matt Caswell.
- Fixed in OpenSSL 3.3.2 (git commit) (Affected since 3.3.0)
- This issue was also addressed in OpenSSL 3.2.3, OpenSSL 3.1.7, OpenSSL 3.0.15, OpenSSL 1.1.1za, OpenSSL 1.0.2zk
CVE-2024-4741 - Use After Free with SSL_free_buffers [Low severity] 27 May 2024:
Issue summary: Calling the OpenSSL API function SSL_free_buffers may cause
memory to be accessed that was previously freed in some situations
Impact summary: A use after free can have a range of potential consequences such
as the corruption of valid data, crashes or execution of arbitrary code.
However, only applications that directly call the SSL_free_buffers function are
affected by this issue. Applications that do not call this function are not
vulnerable. Our investigations indicate that this function is rarely used by
applications.
The SSL_free_buffers function is used to free the internal OpenSSL buffer used
when processing an incoming record from the network. The call is only expected
to succeed if the buffer is not currently in use. However, two scenarios have
been identified where the buffer is freed even when still in use.
The first scenario occurs where a record header has been received from the
network and processed by OpenSSL, but the full record body has not yet arrived.
In this case calling SSL_free_buffers will succeed even though a record has only
been partially processed and the buffer is still in use.
The second scenario occurs where a full record containing application data has
been received and processed by OpenSSL but the application has only read part of
this data. Again a call to SSL_free_buffers will succeed even though the buffer
is still in use.
While these scenarios could occur accidentally during normal operation a
malicious attacker could attempt to engineer a stituation where this occurs.
We are not aware of this issue being actively exploited.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Found by William Ahern (Akamai).
Fix developed by Matt Caswell.
Fix developed by Watson Ladd (Akamai).
- Fixed in OpenSSL 3.3.1 (git commit) (Affected since 3.3.0)
- This issue was also addressed in OpenSSL 3.2.2, OpenSSL 3.1.6, OpenSSL 3.0.14, OpenSSL 1.1.1y
CVE-2024-4603 - Excessive time spent checking DSA keys and parameters [Low severity] 16 May 2024:
Issue summary: Checking excessively long DSA keys or parameters may be very
slow.
Impact summary: Applications that use the functions EVP_PKEY_param_check()
or EVP_PKEY_public_check() to check a DSA public key or DSA parameters may
experience long delays. Where the key or parameters that are being checked
have been obtained from an untrusted source this may lead to a Denial of
Service.
The functions EVP_PKEY_param_check() or EVP_PKEY_public_check() perform
various checks on DSA parameters. Some of those computations take a long time
if the modulus (p
parameter) is too large.
Trying to use a very large modulus is slow and OpenSSL will not allow using
public keys with a modulus which is over 10,000 bits in length for signature
verification. However the key and parameter check functions do not limit
the modulus size when performing the checks.
An application that calls EVP_PKEY_param_check() or EVP_PKEY_public_check()
and supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
These functions are not called by OpenSSL itself on untrusted DSA keys so
only applications that directly call these functions may be vulnerable.
Also vulnerable are the OpenSSL pkey and pkeyparam command line applications
when using the -check
option.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are affected by this issue.
Found by OSS-Fuzz.
Fix developed by Tomas Mraz.
- Fixed in OpenSSL 3.3.1 (git commit) (Affected since 3.3.0)
- This issue was also addressed in OpenSSL 3.0.14, OpenSSL 3.1.6, OpenSSL 3.2.2